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Abstract

A semi-analytical analysis of free vibration of plates with cross-sectional discontinuities due to abrupt changes in
thickness is presented. A basic square element divided into suitable subdomains dependent upon the positions of these
abrupt changes is used as the basic building element. Admissible functions that satisfy the essential or geometric
boundary conditions are used to define the transverse deflection of each subdomain. Continuities in the displacement,
slope, moment and higher derivatives between adjacent subdomains are enforced at the interconnecting edges. The
resulting global energy functional from the proper assembly of the coupled strain and kinetic energy contributions of
each subdomain is then minimized via the Ritz procedure to extract the frequencies and mode shapes. Contour plots
of a range of new mode shapes are presented for the enhancement of understanding the dynamic behavior of this class
of plates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thin plate elements have found application in most branches of engineering and the study of this basic
structural member is of immense practical interest in marine, aeronautical, civil, mechanical and naval
engineering design. This paper examines the vibration characteristics of thin isotropic plates with cross
sectional discontinuities due to abrupt changes in thickness. Plates with these discontinuities are often
encountered in printed circuit board designs. These abrupt changes in thickness are present usually to
improve heat transfer characteristics as well as to fulfil certain assembly and packaging requirements. Due
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to the complicating effects of the abrupt thickness variation, conventional continuum methods cannot be
directly applied. With the implementation of some form of discretization and proper enforcement of re-
sulting continuity requirements, however, continuum methods such as the Ritz method can be applied with
a great measure of success.

Discrete methods have been most popular for analyzing plates with abrupt changes in thickness as well
as cutouts. Of the various discrete methods available, the finite element method (FEM) is by far the most
widely used method for this class of problems. Notable recent works are Boay (1996), Sabir and Davies
(1997) and Sivakumar et al. (1999a,b). The boundary element method, though considerably less often used
for these problems compared to the FEM, has also been successfully employed to analyze plates with ir-
regularities such as cracks and holes. Published works include Pan (1997) and Chau and Wang (1999). A
more recent development for the solution of plates with discontinuities is the differential quadrature ele-
ment method which was successfully used by Liu and Liew (1999a,b) for the vibration analysis of dis-
continuous Mindlin plates.

Although discrete methods have been proven reliable for solving the presently defined problem, the
major drawback is that they are in general very computationally intensive with substantial demands on
data storage space and CPU time. Semi-analytical solution methods thus provide a very attractive alter-
native. Prominent works include the semi-analytical isoparametric strip distributed transfer function
method which was developed and successfully used by Yang and Zhou (1996) and Yang and Park (1999)
for the analysis of irregularly shaped plates and plates with curved boundaries. Geannakakes (1990) also
presented a semi-analytical finite strip method utilizing beam characteristic orthogonal polynomials for the
vibration analysis of arbitrarily shaped plates. An efficient and accurate semi-analytical method based on
the Rayleigh—Ritz procedure by using characteristic beam functions was developed by Lam et al. (1989) for
the analysis of rectangular plates with cutouts and material non-homogeneity. Further works based on
semi-analytical methods were presented by Laura et al. (1990, 1997) via an optimized Rayleigh—Ritz
method for the vibration of plates with thickness discontinuities.

The present work develops and utilizes the highly efficient and elegant domain decomposition method,
which is essentially a semi-analytical approach with discretization occurring only along the lines adjoining
major rectangular subdomains. This approach has been successfully employed for the treatments of various
mixed-edge boundary conditions and sharp re-entrant geometries in plate analyses, see Liew et al. (1993a,b,
1995) and Liew and Sum (1998). This semi-analytical method is now proposed for the treatment of plates
with cross sectional discontinuities or, more specifically, abrupt changes in the thickness. Through the use
of the domain decomposition method, a complex plate configuration is decomposed into appropriate
subdomains and orthogonally generated admissible polynomials are used as displacement functions. Sets of
continuity matrices are then computed from the compatibility conditions at the interconnecting edges so as
to couple the eigenvectors of adjoining subdomains. The global energy functional is obtained by the proper
assembly of the individual stiffness and mass matrices of each subdomain and the Ritz procedure is then
employed to extract the natural frequencies. Where possible, verification of the present formulation is
provided via comparison with results from open literature. Further, a range of new mode shapes is pre-
sented for various boundary condition types.

2. Theoretical formulation
2.1. Basic building block and notation
The basic building block employed here is of square domain as shown in Fig. 1. The plate is assumed to

be thin, isotropic and homogeneous in all subdomains so that the Kirchoff-Love plate theory is applicable.
In Fig. 1, a/b is the aspect ratio and y is the geometric ratio. Subdomains 1-3 have similar flexural ri-
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Fig. 1. Geometry definition of a CSCS square plate with internal discontinuity.

gidities, D; = 4D, while subdomain 4 has a flexural rigidity of Dy = D. Thus the mass matrices of sub-
domains 1-3 can be pre-multiplied by a factor of v/4.0 prior to assembly so as to account for the variation
in the thickness. In the subsequent derivation, the superscript {e} denotes the subdomain indices with ¢ = 1,
2, 3 and 4. A very small Poisson’s ratio is assumed for the purpose of comparison with results reported by
Lam et al. (1989).

In the present study, a square plate is assumed. Three types of boundary conditions have been considered,
namely: the simply supported case, the clamped-simply supported—clamped-simply supported (CSCS) case
and the fully clamped case. For all three cases, the edge ratio for the discontinuity is given by ¢/a = 0.4.

2.2. Polynomial based displacement functions

To apply the Ritz method, the plate domain is sub-divided into smaller rectangular subdomains as
shown in Fig. 1. At each subdomain, a set of piecewise continuous displacement functions is assumed.
These functions are chosen so that they satisfy the essential geometric boundary conditions of each sub-
domain. The general forms of these displacement functions are

Wi (x, y) ZZC{} {}}I,D ) (1)

i=1 j=

where ¢,(x) and y,(y) are the admissible trial functions in the x and y directions respectively; and ¢ = {1, 2,
3, 4} represents the subdomain index. Depending on the relative location of each subdomain, the respective
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displacement function shares an identically generated set of admissible functions either in the x or y di-
rection, i.e.

(rbi(x){gl} = ¢i(x){gz}; i= 1,2, 3; ) 715 {81782} ce (2&)

v =y =123, {eea} € (2b)

The admissible functions ¢,(x) and y;(y) are sets of characteristic orthogonal polynomial functions
generated by the Gram-Schmidt orthogonalization process (Chihara, 1978). These functions are essentially
the product of a basic function and an orthogonal polynomial space. The basic functions ¢,(x) and ,(y)
are chosen to satisfy at least the geometric boundary conditions of the subdomain and may be expressed as
follows:

¢1(x) = [ [Irx))” (3a)

i1

2 Q

Ui () = [Iro))” (3b)

i=1
where the I';s are the boundary equations of the ith supporting edge and the Q;s take the following forms
Q, =0 if the ith edge is free (4a)
Q, =1 if the ith edge is simply supported (4b)
Q;, =2 if the ith edge is clamped (4c)
The higher order polynomial terms are generated using the Gram—Schmidt orthogonalization process
b1 (¥) = {g(x) = E (%) — Efpyi(x); k=1,2,3... (5)

where
A A
—A 15% —B 28
8 =—; 5 =— 6a
A A (6a)
= [ i (6b)
AL = / 7 (x) dx (6¢)
0

Ay = / dp_ (x)dx (6d)

0

where g(x) is an arbitrary function chosen to ensure that the higher order orthogonal functions satisfy the
geometric boundary conditions. The polynomial ¢,(x) is defined as zero and the set of polynomials gen-
erated satisfies the orthogonality condition

/Oa ¢i(x)p;(x)dx =8, i, j=1,2,3... )

where 0;; is the Kronecker delta. The orthogonal functions in the y direction can be generated in similar
fashion where the limits of integration now range from 0 to b.
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2.3. Continuity consideration

To satisfy the compatibility requirement at the interconnecting boundaries, the continuities in deflection,
slope and higher derivatives are enforced concurrently at evenly distributed quadrature segments along the
boundaries. The method of subdomain weighted residual (Grandin, 1986), is subsequently applied at these
quadrature segments

/E(s)ﬂ(s)ds:o; i=1,2,3,...,Mgq (8)
with a weighting function 9(s) of unity. In Eq. (8), E(s) is the error function representing the relative
difference in displacement, slope and higher derivatives between adjacent subdomains. This function is
minimized simultaneously over separate regions of the integral. In explicit forms, this implies

/ N(WE — w1y ds = 0 (92)

Sn—1

where N denotes the matrix containing the respective differential operators
a o T

withn=1,2,3,... Mg;e=1,2,3,4,r=1,2,3,...,J — I; and s = x or y depending on the direction of the
continuities to be enforced. The deflection functions, W{(x,y), of each subdomain have been defined in Eq.
(1). A set of continuity matrices that couple the eigenvectors, C;;, of the adjacent subdomains can be ob-
tained directly from the above simultaneous equations. This process is illustrated for subdomains 1 and 2.
In Fig. 1, it can be seen that the two subdomains share an identical set of admissible functions in the x
direction

d)z(x){l} :d)l(x){z}? i= 17277[ (10)
From Eqgs. (9a), (9b) and (10), the following set of simultaneous equations is obtained:
G-R=0 (11a)
_¢1(x)(1) Py (x ) W i(x)(l) ¢I(x)(1)-
L) 17213 e /71 G )13
Qx Qx Qx ox
C=1opmh oo . dem® . deind (11b)
[ ox’ ox’ ox!
T L Y L Y100 LA 105 4
L ox” ox” ox” ox” -
R=[R R - R - N (11c)

where r =1, 2, 3,...; and

c“} [0 Zc{f} [0 dy] (12)

The integration in Eq. (12) is performed over the respective quadrature segments distributed along the
interconnecting boundary. To satisfy Eq. (11a)-(11c) simultaneously, all the terms in R, must vanish
identically
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m1:m2:m3:...:m1:0 (13)
From Eq. (13), the continuity matrix that couple the eigenvectors of subdomains 1 and 2 is obtained
{c®} = [PP]{ct} (14)
where

[p]

]
[P = ) (15)
[p]
in which
N
1 = (0] [a"] 1o
where [¢(]" is the generalized inverse of a fully populated matrix [¢{*!] of the form
fatt gl gl o d) - )]
o 6 e a4l
@ _ | : : : :
q;{zl} q;{12} 4,53} T ‘]r{,j} T q,{,J}
_ql{l;t};l %{\22 qg(}ﬁ T q}{lj;j T qu i

The generalized inverse [¢{!]" is derived from the singular-value decomposition of [¢1*)] via the Rao
and Mitra (1971) generalized inversion procedure

(g7 = ([¢]"g)) " [a]" (18)
{e}

nj o

where [q{*’}]H is the Hermitian transpose of [¢!*/]. The element of the matrix, ¢
following integrations:

are computed from the

gt =1 ¢x)"dx (19a)

Xn—1

Vn
a5 = / ¥, 00" dy (19b)
Yn—1

The subscript # in the above expression represents the indices of the quadrature segments whereas the
subscripts i and j represent the indices of the polynomial functions. The derivation of the continuity matrix
described above can be easily generalized to three or more subdomains and in this case as shown in Fig. 1,
there are four subdomains under consideration.

2.4. Global energy functional

The maximum strain and kinetic energies for a given rectangular element with small deflection vibration
are given by
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c D
Uik =5 //A(Wjv + 20 W Wy + W+ 2(1 — v) W) d4, (20)
f _ pho? 2
Tl ==~ w*d4 (21)
A

where the subscripts x and y denote partial derivatives with respect to x and y respectively. The natural
frequency is denoted by . The strain energy, U'*, and kinetic energy, T, for a rectangular subdomain,
{e}, can be expressed in terms of the eigenvectors, C;;, of the nth subdomain

Ut — %/A{C“}}T[K{ﬂ [ch) da (22)

7l :%/A{C{”}T[M“}MC“}}M (23)

The transformed stiffness matrix [K] and mass matrix [M?] for subdomain {} are derived from the
continuity matrix [P®}] of Eq. (15) which is related to the matrix [Q"] by Eq. (26) in the following
manner:

K] = [0k ][] (24)
7] = [0 M) ] (25)
0] = T]1PY] (26)

For an isotropic plate, the stiffness matrix is expressed as

T
K] = [E]"[F] (27)
E2’2 FO‘O
EO’O F2,2
[E] = VE®? . [F]= | F20 (28a,b)
VE2’0 F0’2
2(1 = v)EM! 5x1? FU 5%J2
e = (B BY - B B B§ - By - Ef Ef - Ef - EY E§ - Ej]
(29a)
[Fole =AY Fsy - B OBy By B FyYOFY e FSo-e Fy O Fg o By
(29b)
a dr¢ d3¢
E = L dx 30
- [ (30)
b r N
. dy, d zp]
B = / [ LY P 30b
/ 0 dyr dy3 ( )

in which r, s = 0, 1, 2. The limits of integration in Egs. (30a) and (30b) depend on the x and y dimensions of
the individual subdomain. The mass matrix is expressed as
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Mz, . = [EO‘O]T[FO’O] (31)

The respective strain and kinetic energies of each subdomain are assembled to form the global strain
energy, U, and kinetic energy, K, of the entire square plate domain as the sum of the contribution from each
subdomain

4
U=> ut (32a)
e=1
4
K=Y 1" (32b)
e=1
Substituting the global strain energy and kinetic energy into the total energy functional
F=U-T (33)
and applying the Ritz minimization
oF
acy;

leads to the governing eigenvalue equation for the entire plate
([K1] — o’ [M1]){C!} = {0} (35)
The elements of the global stiffness matrix, [Kt], and the global mass matrix, [M], are given by

4

[Kx] =) [K"] (36)

e=1

4
(M) = [M"] (37)

e=1

The natural frequencies and mode shapes are obtained by solving this resulting governing eigenvalue
equation. The eigenvalues are expressed in terms of a non-dimensional frequency parameter, A, given by

) 2 [Ph
_ P 38
= oay\[ 5 (38)
The merit of the present method based on the above formulation is that regardless of the number of
subdomains, the assembly process of the global stiffness and mass matrices does not increase the deter-

minant size of the final eigenvalue equation.
2.5. Shape functions for selected case studies

2.5.1. Simply supported square plate with centrally located discontinuity (a/b = 1.0; ¢/a = 0.4; D; = 4D;
D[[ = D,' V= 0)

Suitable boundary conditions are imposed along the axis symmetric edges to obtain the symmetry and
anti-symmetry modes of the simply supported plate under consideration here. The symmetry modes are
obtained by enforcing zero slope and zero shear force at the symmetry edge, while anti-symmetry modes are
obtained from the boundary conditions of zero displacement and zero moment. The admissible functions



K M. Liew et al. | International Journal of Solids and Structures 38 (2001) 4937-4954 4945

used for the plate deflection functions are derived from the boundary conditions associated with each
subdomain.

(1) Doubly symmetry modes: The boundary conditions associated with the doubly symmetric (SS) modes
of the fully supported square plate are simply supported-symmetry along both x and y directions for all
four subdomains. The x and y ranges for all subdomains are (0 <x < a) and (0 < y < b) respectively. Hence,
the basic and generating functions for the SS modes of a simply supported square plate with a centrally
located sectional discontinuity are

PP (x) =8x -4 +x*, ) =-2+x £=1,234 (39a)

Pit0) =8y -4 1)t g0 =24y, £=1,234 (39)

(i1) Doubly antisymmetry modes: The boundary conditions associated with the doubly antisymmetric
(AA) modes of the fully supported square plate are simply supported—simply supported along both x and y
directions for all domains. The x and y ranges for all subdomains remain unchanged at (0 <x<a) and
(0 <y < b) respectively. Hence, the basic and generating functions for the AA modes may be expressed as
follows

) =x—20 424, )= e=1,2,34 (40a)

Vo) =y-2 4y dD) =) e=1,2,34 (406)

(i) Antisymmetry—symmetry modes: The boundary conditions associated with the antisymmetric-sym-
metry (AS) modes of the fully supported square plate are simply supported—simply supported along the x
direction and simply supported-symmetry along the y direction for all four domains. The x and y ranges for
all subdomains remain unchanged again at (0 <x<a) and (0 <y<b) respectively. Thus, the basic and
generating functions for the AS modes can be obtained as

G (x) =x — 200 +x*, g9 =x% e=1,2,3,4 (41a)

W) =8y =4 +0 g0 =240, e=1,2,34 (41b)

(iv) Symmetry—antisymmetry modes: The boundary conditions associated with the symmetry-antisym-
metric (SA) modes of the fully supported square plate are the exact opposite to those from the AS mode of
analysis, being; simply supported-symmetry along the x direction and simply supported—simply supported
along the y direction for all subdomains. The x and y ranges for all subdomains remain unchanged at
(0<x<a) and (0 y<b) respectively. Hence, the basic and generating functions for the SA mode of
analysis are

PP (x) =8 —d +x*,  gW) = —2x+x% £=1,2,3,4 (42a)

W =y-2"+1" Y=y, £=1234 (42b)

2.5.2. Clamped-simply supported—clamped—simply supported square plate with centrally located discontinuity
(a/b=10; ¢c/Ja=04;, Dy=4D; Dy =D; v=20)

The boundary conditions of the basic square element for a CSCS plate are consistent for all the sub-
domains in both the x and y directions and are associated to the types of modes being considered. Thus, for
the SS modes of a CSCS square plate, the boundary conditions are clamped-symmetry along the x direction
and simply supported-symmetry along the y direction for all four subdomains. For AA modes, the
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associated boundary conditions are clamped-simply supported along the x direction and simply supported—
simply supported along the y direction for all subdomains.

Similarly, the boundary conditions associated with the AS modes of the CSCS square plate are clamped—
simply supported along the x direction and simply supported-symmetry along the y direction for all four
subdomains. In the same manner, the boundary conditions associated with SA modes of the CSCS square
plate can be taken as simply supported-symmetry along the x direction and simply supported—simply
supported along the y direction for all subdomains.

The basic generating functions for the various types of mode analysis are derived from the associated
boundary conditions of the basic square element for a CSCS plate. The x and y ranges are consistent at
(0<x<a) and (0 <y < b) respectively for all four subdomains. Thus, the basic and generating functions
derived for each type of mode analysis may be expressed as follows:

(1) Doubly symmetry modes

PP () =4 — 4 +x*, g ()= -2 +x%, e=1,234 (43a)

Uit =8y -4 1)t ) =24y, e=1,2,34 (43b)
(i1) Doubly antisymmetry modes

) =37 — 5% 42t gW) =x, e=1,2734 (44a)

Pt =y-27+3% g0 =y, e=1,234 (44b)
(iil) Antisymmetry—symmetry modes

P x) =32 -5 +xt, g =x e=1,2,3,4 (45a)

{e} Ry A3 4 {e}(y) — _ 2 —

V) =8 -4+, g9 () =-+)y, e=123/4 (45b)
(iv) Symmetry—antisymmetry modes

PP (x) =4 — 4’ +x*, g ()= -2 +x% e=1,234 (46a)

o) =y=27+y g0 =y, e=1,234 (46b)

2.5.3. Fully clamped square plate with centrally located discontinuity (a/b = 1.0, ¢/a = 0.4; d; =4d; d; = d;
v=10.0)

The boundary conditions of the basic square element for a fully clamped plate are similar for all the
subdomains in both the x and y directions and are associated according to the types of mode analysis being
considered. Hence, for the SS modes of the fully clamped plate, the boundary conditions are clamped-
symmetry along both the x and y directions for all four subdomains. For the AA modes, the associated
boundary conditions are clamped-simply supported along both the x and y directions for all subdomains.

Similarly, the boundary conditions associated with the AS modes of the fully clamped square plate are
clamped-simply supported along the x direction and clamped-symmetry along the y direction for all four
subdomains. In the same manner, the boundary conditions associated with SA modes of the fully clamped
square plate can be taken as clamped-symmetry along the x direction and clamped-simply supported along
the y direction.

As in the previous case, the basic and generating functions for various types of mode analysis are derived
from the associated boundary conditions of the basic square element for a fully clamped plate. The x and y
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ranges are consistent at (0 <x <a) and (0 < y < b) respectively for all four subdomains. Thus, the basic and
generating functions for each type of mode analysis may be derived as follows:

(1) Doubly symmetry modes

P (x) = a4 — 4 +xt, gP ) =2 +a?, e=1,2,3,4 (47a)

Yo =42 -4 +)t g ) =—2p+)7 e=1,234 (47b)
(i1) Doubly antisymmetry modes

¢§8} (x) = 3x% — 5x¢° +x*, d¥x)=x, £=1,2,34 (48a)

ViP0) =3 -5+ g =y, e=1,2,34 (48b)
(iil) Antisymmetry—symmetry modes

Pl (x) = 367 — 5 4 x*, g9 =x, £=1,2,34 (49a)

U0 =42 -4 +)t g ) =—2p+)% e=1,234 (49b)
(iv) Symmetry—antisymmetry modes

PPx) =dx —a +xt, W)= —2x+x% £=1,2,3,4 (50a)

VIO =3 =50+ o) =y e=1,234 (50b)

3. Results and discussion

The convergence study for the simply supported square plate is tabulated in Table 1. The study shows a
monotonically downward convergence at 9 x 9 terms for the SS modes and at 10 x 10 terms for the AA
modes. The results in Table 2 compare well with those reported by Tham et al. (1986) in which a negative
stiffness approach was used. Very good agreement is also observed when compared with the results reported
by Lam et al. (1989). A maximum deviation of less than 0.5% is observed for the simply supported case and
a maximum deviation of less than 1.2% for the first few modes of the fully clamped case. Excellent
agreement was also obtained against the finite difference results of Aksu and Ali (1976).

Parametric studies have been performed for both simply supported and fully clamped square plates with
abrupt cross section. The result for the first symmetry (SS) mode follows closely to those reported by Lam
et al. (1989). A wide range of new parametric curves is illustrated in Figs. 2 and 3 for the simply supported
and fully clamped square plates respectively.

The mode shapes for the simply supported square plate with the centrally located cross-sectional dis-
continuity are illustrated in Fig. 4 in the form of contour plots. Corresponding results for the CSCS and
fully clamped square plates are presented in Figs. 5 and 6 respectively. It is observed that the mode shapes
for both the fully clamped and simply supported plates are quite similar. This similarity is due to the
symmetrical nature of their configurations. The mode shapes for the CSCS plate, however, are significantly
different due to the presence of only one symmetry axis and this is clearly evident from the figures.



4948 K. M. Liew et al. | International Journal of Solids and Structures 38 (2001) 49374954

Table 1
Convergence of frequency parameter, A = maz(ph/D)l/ 2 of a simply supported square plate with centrally located abrupt section
(a/b=1.0;¢/a =0.4;7 =0.6; D; = 4D; Dy = D;v = 0.0)

Terms Segments Mode sequence number
IxJ Mq 1 2 3 4 5 6
(a) SS mode
4 x4 4 30.54 148.3 153.1 267.5 4233 423.4
5x5 5 30.51 147.5 151.2 263.9 384.8 387.4
6x6 6 30.50 146.8 149.9 261.5 369.9 374.4
7x7 7 30.47 146.5 149.4 260.4 361.0 366.4
8x8 8 30.44 146.4 149.3 260.2 3579 363.1
9%x9 9 30.44 146.4 149.2 260.1 357.7 362.6
(b) SA mode
4 x4 4 73.95 193.3 242.3 373.4 468.0 529.3
5x5 5 73.75 192.3 242.0 370.5 440.4 523.9
6x6 6 73.62 191.8 241.4 368.4 434.8 523.6
7x7 7 73.42 191.6 241.4 367.7 432.2 518.9
8x8 8 73.40 191.6 241.2 367.5 431.3 518.6
9%x9 9 73.27 191.5 241.0 367.4 431.2 516.3
10 x 10 10 73.26 191.4 241.0 367.4 431.2 515.5
(c) AS mode
4 x4 4 73.95 193.3 242.3 373.4 468.0 529.3
5x5 5 73.75 192.3 242.0 370.5 440.4 523.9
6x6 6 73.62 191.8 2414 368.4 434.8 523.6
7x7 7 73.42 191.6 241.4 367.7 432.2 523.9
8x8 8 73.40 191.6 241.2 367.5 431.3 518.6
9%x9 9 73.27 191.5 241.0 367.4 431.2 518.3
10 x 10 10 73.26 191.4 241.0 367.4 431.2 515.5
(d) AA mode
4 x4 4 117.4 296.2 301.6 471.7 607.4 608.8
5x5 5 117.3 296.2 301.4 476.5 595.7 597.0
6x6 6 117.2 295.5 301.3 475.1 595.2 596.7
7x7 7 117.1 295.5 301.3 474.9 593.6 595.2
8x8 8 117.1 295.3 301.2 474.2 593.4 594.9
9%x9 9 117.0 295.2 301.2 474.2 592.3 594.2
10 x 10 10 117.0 295.2 301.2 474.0 592.3 593.7
Table 2

Comparison of frequency parameter, l:waz(ph/D)l/ 2, for square plates with centrally located square abrupt cross section
(Ll/b = IODI = 4DD][ = D, V= 0)

Inner side ratio c¢/a Finite difference Modified R-R Negative stiffness Present method
Aksu and Ali (1976) Lam et al. (1989) Tham et al. (1986)

(a)Simply supported square plate

0.00 31.14 31.34 31.34 31.33

0.25 30.46 31.04 30.90 30.87

0.50 29.58 30.18 30.22 30.11

0.75 26.74 27.65 27.61 27.63

1.00 19.52 19.74 19.74 19.74

(b)Fully clamped square plate

0.00 - 57.15 57.07 57.12

0.25 - 57.46 57.28 57.29

0.50 56.14 58.40 58.50 58.27

0.75 51.22 52.11 50.49

1.00 34.85 35.99 35.98 35.98
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Fig. 2. Parametric study of a simply supported square plate with a centrally located abrupt cross section (a/b =1.0;¢/a = 0.4;D; =

4D; Dy = D;v = 0.0); ‘A’ as defined in Lam et al. (1989).
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Fig. 3. Parametric study of a fully clamped square plate with a centrally located abrupt cross section (a/b = 1.0;c/a = 0.4;D; =

4D; Dy = D;v = 0.0); ‘A’ as defined in Lam et al. (1989).
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Fig. 4. Contour plots of deflection mode shapes for a simply supported square plate with a centrally located abrupt cross section
(a/b=1.0;c/a =0.4;D; = 4D; Dy = D;v = 0.0).
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Fig. 6. Contour plots of deflection mode shapes for a fully clamped square plate with a centrally located abrupt cross section
(a/b=1.0;c/a =0.4;D; = 4D; Dy = D;v = 0.0).
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4. Conclusions

A semi-analytical technique based on the domain decomposition method has been presented for the
vibration analysis of thin isotropic plates with cross sectional discontinuities in the form of abrupt changes
in thickness. The flexibility and computational efficiency of the methodology has been demonstrated by
considering square plates with centrally located discontinuities and for three boundary condition types.
From comparisons with results available in the literature, the accuracy of the method has been validated as
very good agreements was established. The computed natural frequencies have been documented in tabular
form and the contour plots of a range of new mode shapes have been presented. This work has been re-
stricted to thin plates. An extension for possible future work is to include the effects of shear deformation
and rotary inertia so as to cater for thick plates with abrupt thickness changes.
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